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ABSTRACT

The turbulence energy cascade model used in the Eddy Dissipation Concept for combusting
flow is presented and discussed in relation to existing knowledge of relevant turbulent flows.
The cascade consists of a stepwise model for energy transfer from larger to smaller scales
and for energy dissipation from each scale level by viscous forces. The cascade model makes
a connection between the viscous fine structures, where combustion takes place, and the
larger transporting eddies which are simulated by turbulence models. Thus, fine-structure
quantities are expressed in terms of turbulence energy and dissipation. The model is compared
to turbulence-energy-spectrum data for the inertial subrange and the dissipative range for
nonreacting and reacting flows. The model is also discussed in relation to isotropic decaying
turbulence in the transition from initial to final periods of decay. It is concluded that the
energy cascade model captures important features of the turbulence structural interaction
and dissipation.



1 INTRODUCTION

In the Eddy Dissipation Concept for combusting flows, Magnussen used a turbulence energy
cascade model (Magnussen and Hjertager, 1976; Magnussen et al., 1978; Magnussen, 1981a,
1981b, 1989; Byggstayl and Magnussen, 1983). Some issues relating to this cascade model
will be presented and discussed in the following. The objective is to give relevant background
and clarify some issues in the Eddy Dissipation Concept.

Magnussen’s model has been used in several commercial and research codes for combustion
flow calculations. However, for various reasons, the background for the model has not been
presented and discussed in the literature. This paper seeks to answer many inquiries about
the considerations behind the Eddy Dissipation Concept.

The purpose of a model is to depict the features of a phenomenon that are expected to
be important, without pretending to represent the full phenomenon in all aspects. On the
other hand, a model — in particular an engineering model — has to be applicable within certain
limitations of human, material and financial resources. We think the Eddy Dissipation cascade
model that is outlined and discussed here is such a link between science and technology. The
model has been in widespread use for combustion predictions for many years. In this study,
the model has been compared to data for the turbulence energy spectrum. Recent data for
the dissipative range of nonreacting and reacting flows enable the model to be assessed.

Averaged over time, the scales of turbulence are continuously distributed over a wide spectrum.
Mechanical energy is transferred from the mean flow to large eddies and then further to smaller
and smaller eddies (Richardson, 1922). The larger eddies carry the major part of the kinetic
energy. Smaller eddies whirl faster but contain less energy. The smallest eddies have the
highest frequency and the largest viscous stresses. Viscous friction transfers mechanical energy
to heat. This dissipation occurs at all scale levels but is largest in the smaller eddies. The
spectrum of larger and smaller eddies is often considered as an energy or turbulence cascade.

Onsager (1945, 1949) seems to be the first to suggest a stepwise cascade model for the tur-
bulence spectra. Each step was represented by a frequency or wave number that was twice
the value of the preceding step. A model of this type was presented by Tennekes and Lumley
(1972) (see also Lumley, 1992; Lumley et al., 1996) for the inertial, or nonviscous, part of the
spectrum, and they formulated the model in terms of the wave number.

Combustion takes place where reactant molecules are mixed, that is, mainly in the smaller
scales. In these fine structures, the local molecular flux is the largest. Similarly, the local
viscous stress, and thus the dissipation, is the largest in the fine structures. In combusting
flows, the heat release produces some mechanical energy, and this affects the turbulence spec-
trum. Unfortunately — as seen from a combustion viewpoint — most cascade models and other
spectrum models are restricted to the nonviscous part of the spectrum.

In this paper the turbulence cascade model will be compared with existing models and experi-
mental data for the turbulence energy spectrum; for the inertial range as well as the viscous
(dissipative) range.

The energy transfer in the cascade model can also be regarded as a dissipation model. Such
models are assessed by comparison with theory and experimental data for decaying isotropic
turbulence for high and low Reynolds numbers. This is done in Section 4.



FIGURE 1

In a turbulent flow, the large-scale eddies transfer mechanical energy to smaller eddies. Spatial
transport by turbulent motions is dominated by the large eddies. Thus, the energy-transfer
model will be compared to turbulence viscosity models and experimental data for boundary-
layer flows.

2 CASCADE MODEL

2.1 Input and Output of the Model

The input to the cascade model presented here is the turbulence energy and a turbulence
time-scale or length-scale variable, e.g. the dissipation rate of turbulence energy. These can
be found from modeled transport or balance equations (that is, a statistical turbulence model).
With some modifications, the cascade model can also be used in large-eddy simulations, or
with transport equations on different steps in the cascade. The output of the cascade model
is the mean rate of molecular mixing in a turbulent flow. The mean reaction rate is assumed
to be a linear function of this quantity.

2.2 Outline of the Model

Magnussen (1981a) presented a model with a characteristic frequency or strain rate. Figure 1
illustrates the model for the transfer of mechanical energy from the mean flow, through tur-
bulence energy, to heat. w' is the feed of mechanical energy from the mean flow to turbulence.
For steady-state turbulence, this is the production of turbulence kinetic energy. The sum of
q +q"+ ...+ ¢" is the dissipation rate of turbulence kinetic energy, e. When the turbulence
quantities, such as turbulence energy, are found from transport equations, w’ represents the
total supply of turbulence kinetic energy.

The first level in the turbulence structure is the large, energy-rich eddies. It is characterized
by a velocity scale v’ (which is taken equal to (%k)l/ 2 where k is the turbulence energy) and
a length scale L'. A frequency or strain rate can be expressed as

W' =d'/L. (1)

These quantities vary in space and time and are determined by the turbulence model, e.g.
a k- model or a Reynolds-stress-equation model. This level represents the whole spectrum
because it contains the effect of smaller scales. The next level represents the part of the
spectrum where the characteristic frequency is w” = 2w’, velocity u”, and length L”. In the
same way as the first, this level was assumed to contain the effect of all subsequent levels.
Likewise, the n-th level was characterized by w, = 2wy,—1, U, and L,. In the smallest eddies,
w*, u*, and L* are of the same order of magnitude as the Kolmogorov scales.

The transfer from the first to the second level, w”, is equal to the sum of the dissipation from
all subsequent levels, thus the dissipation is ¢ = ¢’ + w".

Production, which feeds mechanical energy to the first level, is a product of a turbulence stress
and a mean-flow strain rate. The feed to the second level was modeled according to the same



pattern:
w” = %C’D12u"2w'. (2)

The transfer from the first level to the second was modeled to be proportional to the square of
a characteristic fluctuation at the second level and proportional to the characteristic frequency
or strain rate at the first level. This is an analogy to production, which is proportional to the
square of a characteristic fluctuation at the first level, and also proportional to the strain rate
at the mean-flow level. In this expression, 2w’ can be replaced by w”.

The transfer of mechanical energy to thermal energy from the first level was modeled as

¢ = Cpovw'?. (3)

This is the direct dissipation from the first level. This model is an analogy to the dissipation
term in the mechanical energy equation, which is proportional to the viscosity and the square
of a strain rate.

In the same way, expressions can be developed for w"" and ¢”, and so on further down in the
cascade. It was assumed that the transfer from one level to the next follows the same model
for all levels. This gave a set of equations for each level. For the n-th level,

Wy = %menu,% (4)

and
an = Cpavw?, (5)

and the balance, when using a quasi-steady assumption, is w, = ¢, + wpt+1. The final step
(n = %) is the fine structures. Here, w* = %Cplw*u* 2 and ¢* = Cparw* 2, and w* is equal to
q*

For simplicity it was assumed that the numerical factors Cpp in the expressions above were
the same, and a constant; and similarly for Cps.

For high and moderate Reynolds numbers, the dissipation is small at the upper levels. That
is, for a small n, g, is negligible compared to w,, and w, is approximately equal to wy1.
Then, for n =2, u"'? approximates %u" 2 If, in the same way, it is assumed that u”? ~ %u’ 2
then w” = Cpi1w’ %u' 2. Further, the turbulence energy, k = %u'2, can be introduced. The

transfer of mechanical energy from the first turbulence level was approximated to be

)

w" = Cp1w'k. (6)

In the turbulent-combustion model (Magnussen, 1981a,1989) the cascade model was used with
Cp1 = 0.135 and Cpo = 0.5. Since a model is only an approximation, numerical values for the
constants have to be a best fit with respect to several types of flows. In a turbulence model,
all constants are more or less linked together. Thus, the constants in the dissipation model
depend on constants in other parts of the complete model.

The value of Cp; = 0.135 was chosen by using the approximation e ~ w" = %CDlu’ 3/L'. The
turbulence viscosity 14 = u’' - L' can be expressed by vy = %Cmu’ e = %ka2 /€. Then,
%C’Dl corresponds to the constant C,, (= 0.09) in the widely used k-¢ model (Launder and
Spalding, 1974).



2.3 Energy Cascade and Fine Structures

A turbulence model gives expression to phenomena that are connected to the first level of
the energy cascade. Chemical reactions take place where the reactants are mixed molecularly,
that is, mainly in the fine structures, which are the small eddies. The energy-cascade model
outlined above gives a relation between large and small scales.

The production of turbulence kinetic energy, or transfer of energy from the mean flow to
turbulence, is a function of quantities that are characteristic of the mean flow and of the
turbulence. Likewise, the transfer from the first to second levels has to be a function of
quantities that are connected to the two levels.

In the combustion model, the energy cascade was used to find a set of relations that control
the combustion rate, see e.g. Magnussen (1981a,1989) or Byggstgyl and Magnussen (1983).
Here, the expressions will be redeveloped without introducing values to the constants.

At a high Reynolds number, the transfer from the first to the second level, w”, is far greater
than the direct dissipation from the first level, ¢’. That is, the dissipation ¢ is approximately
equal to the energy transfer w”, and thus

u
g = %CDlF. (7)

From the model expressions above, it can be found that ¢ = %q*, thus
* 2

U
€= %CDQVF, (8)

and with a balance for the last level,
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The two last equations give the characteristic scales for the fine structures,
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These scales are of the same order of magnitude as the Kolmogorov scales.

The ratio of the fine-structure mass to the total mass was expressed (Magnussen et al., 1978;

Magnussen, 1981a) as
() - (8 () (12
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This is the intermittency factor of the fine structures. If the Taylor microscale A is defined
by A2 = 10vk/e, it follows from Eq. (12) that v* is proportional to R;?’/Q, where Ry = u/\/v
is the Taylor microscale Reynolds number. The postulate in Eq. (12) implies, together with
Egs. (7) and (9), that

*

L*
;y ~

N (13)
This is similar to the model by Corrsin (1962). Here, a factor of 3 was left out. It was
believed that the fine structures are mainly located in the highly strained regions between
larger energy-rich eddies.

The mass transfer between fine structures and surroundings, divided by the fine-structure
mass, was modeled (Magnussen et al., 1978; Magnussen 1981a)

. ’U,* 3 1/2 € 1/2
=27 = (c—m) (5) : (14)

The inverse of this quantity, 7* = 1/m*, is regarded as the characteristic time-scale of the
fine structures. This is the fluid-dynamics time-scale for the chemical reactions, and is an
important quantity for the treatment of chemical kinetics (see Gran and Magnussen, 1996a,b).

The mass transfer between fine structures and surroundings, divided by the total mass, then
became 4
TR 3 1201)2 / ve 1/46 15
== oo \ (z?) 2 (15)

This quantity can be interpreted as the mean rate of molecular mixing. The reaction rate
for a chemical species was assumed to be a linear function of rih. Thus, the choice of nu-
merical values for the model constants Cp; and Cps in the turbulence cascade affects the
local combustion-rate predictions. Using this model, the mean chemical reaction rate and
the characteristic quantities related to the fine structures are expressed in terms of a normal
engineering statistical, or mean-value, turbulence model, such as the k- model.

3 THE TURBULENCE ENERGY SPECTRUM

In this section, the Eddy Dissipation cascade model will be related to existing models and
experimental data for the turbulence energy spectrum.

3.1 Models and Experimental Data

The distribution of turbulence energy on different scales is expressed in terms of the 3-
dimensional energy spectrum, E(k). For high-Reynolds-number flows, Kolmogorov (1941)
expressed the energy spectrum for the inertial subrange

E(r) = Cge¥3k75/3, (16)



where k is the wavenumber. The parameter Cx was assumed to be a constant, known as
Kolmogorov’s constant. In this range, the symbol ¢ represents the transfer of mechanical
energy across a wavenumber, from larger to smaller scales. Experiments indicated that Cg
has an approximate value of 1.5 (Sreenivasan, 1995). The question remains how large a “high”
Reynolds number is.

At higher wavenumbers (smaller scales), viscous forces become important. In the dissipative
range, the Kolmogorov scales can be defined. Compared to the large eddies, this range contains
a small portion of the turbulence energy and therefore has a small value of the energy spectrum.
However, the dissipation spectrum, D(x), has its maximum value in this range.

The shapes of E(k) and D(k) in the dissipative range cannot be determined as easily as in
the inertial subrange. A few researchers have attempted to make a curve-fit to experimental
data of E(k). One type of model extends the inertial-subrange spectrum formulation:

E(k) = Cge?3k75/3 exp[—a(kn)™]. (17)

Here, n = (v3/¢)/* is the Kolmogorov length scale. Smith and Reynolds (1991) found that
Eq. (17), withm =2 and o = (Ck - 1.355)3/2, gave the best model for laboratory-scale flows.
They used Cx = 1.7 instead of 1.5, but the profile was not very different for the two values.
Other researchers have suggested models with a second term, proportional to £~ !, see Yakhot
and Zakharov (1993), She and Jackson (1993), and Sirovich et al. (1994). However, these
models still contain numerical constants to be quantified in the E(k) formulation.

When analyzing experimental data, She and Jackson (1993) found the peak of the dissipation
spectrum at £ ~ 0.1n~!. The model by Smith and Reynolds (1991) gives a dissipation-
spectrum peak value at a wavenumber above 0.2n~'. That is, the model by She and Jackson
predicts that the energy is dissipated at wavenumbers which are somewhat higher (relative to
n~!) than that in the model by Smith and Reynolds. This difference is probably due to the
relatively low Reynolds numbers in the experiments.

The experiments and models referred to above were made for flows of homogeneous mixtures
and nearly constant temperature and density. In a recent study, Furukawa et al. (1996) have
measured the energy spectrum for a combusting approach flow. They presented data taken
from the intermittent local reaction zone, data taken continuously from the same flow, and
data from a nonreacting flow. Compared with the nonreacting flow, the energy spectrum of the
reacting flow was increased at the higher wavenumbers. In particular, the turbulence increased
in the local reaction zone of the approach flow. The range of wavenumbers and the Kolmogorov
scale were about the same in the approach flow and the nonreacting flow. Also in the the
local reacting zone, the wavenumbers were in the same range. However, the Kolmogorov
scale derived from the local reaction zone was found to be 3—4 times larger than that derived
from the continuous data of the same flow and that derived from the nonreacting flow. Since
combustion heat release generally increases the kinematic viscosity, this is a reasonable finding,
and these effects have to be considered when evaluating a model.



3.2 Cascade Model

The energy spectrum is a continuous function distributed over a wide range of wavenumbers
or length scales. A cascade, on the other hand, is a stepwise representation of the same energy
distribution. A single value represents a certain wavenumber or length-scale interval. A step
in the cascade with a wavenumber £, represents the interval (x,,&;), or (k,,%,,). The
next step has wavenumber k41 and represents (k,, 1,5, ), and so forth.

It has been suggested (e.g. Onsager, 1949) that the spectrum can be represented by a cascade
where the wavenumber is doubled from step to step. For the inertial subrange, a model of
this type has been formulated by Tennekes and Lumley (1972). They used &, = 0.62k,,
ki = 1.62kp, and kp+1 = 2.6y, which actually were approximations of e 12 ¢l/2 and
el times k,. This choice gave an interval Ak, = K} — k. equal to k,, and the steps are
approximately equal to unity on a logarithmic scale.

Magnussen’s Eddy Dissipation cascade model is expressed in steps of a characteristic frequency,
or strain rate w, rather than in wavenumber steps. A relation to the energy spectrum is needed
for comparison with experimental data and with other models.

The length scale of a step can be expressed by a wavenumber according to

Lp=(b-kn)" Y, (18)
where b is a constant. Further, it was assumed that a step represents a wavenumber interval
bounded by k;, = ak,. The parameters a (0 < a < 1) and b will be discussed later.

Unlike the cascade of Tennekes and Lumley, each step in Magnussen’s cascade represents the
energy of all the subsequent steps, that is

3,2
2°'n

us = E(k)dk. (19)

Applying this for the next step, and using the energy-transfer model, gave

2 2 2 W41 Wint1
Up — %U‘n-i-l = %un (1 B ;Tn> - /an E(K)dn. (20)

N[9SV

Except for the smallest scales, w,+1 equals w,,, so that the parenthesis is equal to 1/2. With
the relation in Eq. (18), the ratio of the wavenumbers is

Kntl _ Ly, _ _Un Wnil :2\/§< Wy, )1/2 o
Kn Ln+l Upn41 Wn Wn41

The parameter a was not defined as a part of the model, but as a means to relate the model
to the energy spectrum. It seemed natural to choose a value so that x} = a~lk,, which
implies a2 = Kk, 1/kn. By this choice, the steps are centered around k, on a logarithmic
wavenumber axis. The base of the logarithm is a2 =k, /Kn—1, which can be rewritten by
log(g-2y(K/kn) = In(k/ky)/In(a=2). This turned out very similar to the cascade model of
Tennekes and Lumley (see above) for the inertial subrange, that is, for most of the cascade.

For this range, x,, = 0.59x,, was obtained.



The dissipation occurs mainly in the fine structures. In the Eddy Dissipation cascade model,

the dissipation from the last step, ¢* = %s, can be related to the dissipation spectrum by

g = /a:o D(k)dk, (22)

where k, = (bL,)7!, cf. Eq. (18).

Within this framework, the Eddy Dissipation cascade model can be compared to models for
the energy spectrum.

Inertial subrange With the assumption w, = w,41 = €, and with Kolmogorov’s model
(Eq. 16), Eq. (20) can be written

Sur? = %CKsz/sa_2/3f<c;2/3. (23)

When the model in Eq. (4) was introduced together with Eq. (18), this gave b = 2a/ (3CD1C'§’(/2).
With Cp; = 0.135, Cx = 1.5, and a = 0.59, this relation gave b = 1.59.

Dissipative range The limit for the last level is

43 1/4 -
ak, = a(bL,) 1 = 2 (C’%l/?)CE’)Q) a(bn) L. (24)

In the cascade model, the ratio of the energy transfers to the last two levels is wy_1/ws« = 5/4,
and then from Eq. (21), a = (m*/m_l)_l/2 = 0.56. With this value for a, together with
b = 1.59 from above and the model constants Cp; = 0.135 and Cpy = 0.50, the limit of the
last level is ak, = 0.2577_1.

An alternative definition of a, a, = (1 + @p—1) Kn—1/Kn, gave about the same result for the
dissipative region.

This outcome of the model can be compared with data and empirical models by integrating
the dissipation spectrum. The range representing 3/4 of the dissipation corresponds to the
last level of the cascade model. We let An~! be the lower wavenumber limit for this range.
Numerical integration of the dissipation spectrum from the model by Smith and Reynolds
(Eq. 17) gave A = 0.198 for Cx = 1.5, and A = 0.180 for Cx = 1.7. This corresponds to the
limit ak, from the present model.

If the model constant Cpo was decided by these data, the result would be a value of about
0.7. As mentioned, some experimental data have shown a lower value of k7 for the peak of
the dissipation spectrum. This may imply a lower value for A, and thus a larger Cpy. On the
other hand, combustion is likely to increase small-scale turbulence and thus the dissipation at
high wavenumbers. This points toward a lower Cpa.

4 ISOTROPIC DECAYING TURBULENCE

4.1 Testing a Cascade Model

The energy transfer in the cascade model can be regarded as a dissipation model which can
be tested against theory and experimental data for isotropic decaying turbulence. This case



is the simplest type of turbulent flow and has been intensively studied and analyzed by a
large number of investigators. The experimental setup is a uniform plug flow behind a grid
in a wind tunnel. It can be stated that one-point closure models cannot fully represent this
type of flow. For instance, such models do not carry any information about the shape of the
energy spectrum. This shape will influence the development of the decaying turbulence far
downstream of the grid. A two-point closure is required to represent the shape of the energy
spectrum.

However, for engineering purposes, turbulence models are one-point closures, like the well-
known two-equation models. Isotropic turbulence is not a “practical flow” but is used as a test
case for models due to its simplicity. Industrial flows often have zones of weak and decaying
turbulence.

This flow is a test case for turbulence models because all effects other than dissipation can
be neglected. In the zone close to the grid, the turbulence Reynolds number is high. This is
known as the initial period of decay and is dominated by inertia forces. Far downstream in
the flow, the turbulence intensity and the turbulence Reynolds number decrease. In this zone,
turbulence is dominated by viscous forces. This is known as the final period of decay.

4.2 Modeling

For isotropic turbulence, the equation for turbulence kinetic energy is simplified to

dk

Here, k£ and € are the turbulence energy and its dissipation rate, and ¢ is time.

In the k- model, the viscous effects in decaying turbulence were modeled (Jones and Launder,
1972) by modifying the standard-model € equation,

de g2
_% - C€2faz7 (26)

where f¢ is a function of the turbulence Reynolds number. At high Reynolds numbers, like the
initial period of decay, this function is unity. The constant C.o was chosen from experiments
(Comte-Bellot and Corrsin, 1966; Ferziger, 1980) showing that k ~ ¢ P. This gave Ceg = 1.8
for p = 1.25.

The final period of decay occurs when the effect of inertia forces is negligible. Batchelor and
Townsend (1948b) determined from a theoretical analysis that k ~ ¢79, where ¢ = 5/2, and
their experiments gave the same result. Later measurements by Bennett and Corrsin (1978)
and by Wei et al. (1988) gave ¢ values from 2.50 to 2.52. This gives Ceof: = 1.4 at a low
Reynolds number.

In the k-& model, the function f. was designed to fit experimental data. Hanjali¢ and Launder
(1976) suggested

Ceofe =1.8— 0.4exp (— 3R} (27)



Here, Ry can be expressed Ry = %Ri. Coleman and Mansour (1991) have suggested an
alternative formulation based on results from direct numerical simulations,

Ceofe = 1.8 — 0.4exp(—0.13Ry). (28)

Another way to model flows or zones at a low Reynolds number is to introduce viscous terms
in the model in addition to the energy-transfer dissipation term. Such models have previously
been suggested by Rotta (1951a,b) and by Chou and Huang (1975). In addition to the k
equation, an equation is needed for a second turbulence quantity.

The Eddy Dissipation cascade model provides a dissipation model of this type, with e = w"” +¢’
in the k-equation, and the frequency w’ as the second variable. The model equations can be
written

dk

— = Cpiw'k + Cpavw'? (29)
duw' /9 vw'3
—E = CUpi1w =+ sz k . (30)

In the initial period of decay, the first right-hand-side terms dominate in the two equations.
The ratio of the constants is determined from the experiments, C,1 = 0.8 - Cpi. Similarly,
in the final stage of decay, the viscous terms dominate, and the ratio of the constants can be
found, C,o = 0.7 - Cpa.

4.3 Transition from High to Low Reynolds Numbers

The k-w model in Egs. (29) and (30), and the k-¢ model Reynolds number function in Eq. (27)
was calibrated against experimental data for high and very low Reynolds numbers. However,
this does not guarantee that the transition from high to low Reynolds numbers is well modeled.

The different models can be compared by computing the nondimensional decay of the dissi-
pation rate. For k- models, it is seen directly from Eq. (26) that

5 (-%) = Cate )

which is only a function of the turbulence Reynolds number.

In the transition period both dissipation terms in the k-equation, Eq. (29), are operative. The
ratio of the first to the second dissipation term, w” to ¢, is only a function of the Reynolds
number R,

1 20 C 1/2 "
Ry = ( D2 ) bl (32)
CDl 3(1+wll/ql) ql
For the k-w model, Egs. (29) and (30), the nondimensional decay rate can be expressed
k de w' Cot w' 2 Cot Co2 w' q, Cu2 ql ?
BBV T (W g wl y Pw\ W T o™w2 (D) 33
62<dt) 5+CD1(5)+<CD1+CD2)€5+CD2(€) (33)
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FIGURE 2

This can be calculated as a function of turbulence Reynolds number through Eq. (32). In
Figure 2 the present model is compared with Rotta’s model, the function of Hanjali¢ and
Launder, Eq. (27), and the function of Coleman and Mansour, Eq. (28). The effect of the
viscous forces in the models is shown by the departure from the high Reynolds number value
of the decay rate. In Rotta’s model, this value is 1.7 and in the other models it is 1.8.

As mentioned above, values Cp; = 0.135, Cpy = 0.5 were used in the combustion model
(Byggstgyl and Magnussen, 1983; Magnussen, 1989). Further, ratios C,1/Cp1 and C,2/Cps
were kept equal to 0.8 and 0.7 respectively, according to the outline above. The figure shows
that the effect of viscous forces is weaker in the model of Hanjali¢ and Launder, acting only at
Reynolds numbers less than 10. Rotta’s model (1951a) has the strongest effect of the viscous
forces.

The tendency in the two-term models, i.e. the present model and Rotta’s model, is the same as
in Coleman and Mansour’s function based on direct-numerical-simulation results. The present
model has a greater contribution from viscous forces. An increased value of Cp; (to let us say
0.2), which will be indicated in the Discussion below (Sec. 5.1), would give a curve closer to
the function of Coleman and Mansour.

4.4 Comparison with Experimental Data and Numerical Simulations

The models can be tested against experimental data, if such are available. It seems that no
one has carried out measurements systematically from a high to a low Reynolds number. Han-
jali¢ and Launder (1976) and Byggstgyl (1984) compared the models with experimental data
by Batchelor and Townsend (1948b). These experiments exhibited the asymptotic behavior
characteristic of the final period of decay. Batchelor and Townsend (1947,1948a) also reported
experiments for the initial period of decay.

More recent measurements reported by Bennett and Corrsin (1978) and by Wei et al. (1988)
also showed the end of the transition period, and perhaps the final period. From the ex-
periments referred to here, the transition from the initial to the final period seemed to take
place in the region of Reynolds number R, from 5 to 15. The precise value depends on the
initial conditions of the flow. Direct numerical simulations (Schumann and Patterson, 1978;
Mansour and Wray, 1994) of decaying isotropic turbulence support this view.

The data from the literature mentioned above, show that we cannot discern one single value
for Ry, where the two dissipation terms in Eq. (29) are to be equal. The width of the relevant
interval is also unclear. However, one can figure out an interval where the transition is likely
to occur. The Eddy Dissipation model and the other models discussed here, with the possible
exception of Rotta’s model, predict transition within this interval.

5 DISCUSSION

5.1 Turbulence Viscosity and Logarithmic Layer

In Section 2.2, the parameter Cpp in Eq. (6) has been related to the constant C,, in the k-¢
model. A starting point for deciding the value of Cp1 is experimental data for the logarithmic
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part of a boundary layer. Here, the production of turbulence energy is approximately equal to
the dissipation. The production is P, = ui /kx2 and turbulence viscosity is 14 = kxau,, where
u, is the wall-friction velocity, 3 is the distance from the wall, and x is the von Karman con-
stant. In the logarithmic layer, experimental data (Klebanoff, 1955) showed values for u2 /u2
about 1 and for u2/k about 0.25. However, all the values varied across the logarithmic layer.
The constant C), in the standard k-e model (Launder and Spalding, 1974) was determined
by /Cyu = u2/k which uses the value of 0.3. This value, combined with values of the other
constants in the model, was chosen as a best fit for a number of different flows.

Furthermore, the choice of Cp; is influenced by the turbulence-viscosity definition, vy = u’ -

L' = v'?/w!, where u'? is equal to 2k. Possibly, the transverse Reynolds stress u? is a more

relevant quantity for transverse transport than the turbulence energy. If vy = u2/w' were
chosen, the experimental data (Klebanoff, 1955) would have given a value for Cp; of about
0.20 - 0.30. However, relating the turbulence viscosity to turbulence energy has proved to be
reasonable through widespread use of the k-¢ and other k-equation models. From the two
decades of experience, it also seems that the value 0.09 was a reasonable choice for C,,.

5.2 Turbulence Energy Spectrum

The review of spectrum data by Sreenivasan (1995) indicated an inertial subrange in flows
with Reynolds number R) above 50. However, these data were derived from the longitudinal
spectra. Only a few sets of transverse spectra indicated a Reynolds number perhaps as high
as 1000. Thus, the three-dimensional energy spectrum might have had an inertial subrange
only at turbulence Reynolds numbers that were higher than those in most industrial devices.
Sreenivasan’s review included data from grid-generated turbulence, wall-bounded and free
shear layer flows, and atmospheric flows.

Most available spectrum data were measured in nonreacting, nearly isothermal flows. In
combustion, large gradients occur in concentrations, temperature and density. Few details are
known about how this affects the energy spectrum. The results from one experimental study
(Furukawa et al., 1996) indicated that combustion generates turbulence at small scales. This
energy is likely to be dissipated at the same or smaller scale levels. Hence, combustion may
increase the turbulence energy spectrum and the dissipation spectrum at high wave numbers.
This is consistent with the fine-scale combustion model. When exothermic reactions occur in
narrow structures — be it sheets, ribbons, or tubes — the fine-scale structures will expand. The
surrounding fluid will be moved, and thus, small-scale kinetic energy is generated.

5.3 Dynamics of Cascade Model

The cascade model presented is “dynamic” in the sense that the turbulence energy and the
turbulence Reynolds number can be found from transport equations. Thus, the integral of the
spectrum varies, as well as the width of the spectrum, according to the output of the turbulence
model. This means that the number of cascade steps varies throughout a simulation.

On the other hand, a quasi-steady energy balance was assumed at each level in the cascade
model (except at the first level). Spectral cascade models without this assumption can be
found in the literature, and can be extended to the viscous dissipation range. However, these
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models were developed under conditions of constant density and constant viscosity, and the
spectral energy transfer models are still under development. At the time being, they do not
seem to be ready to be taken into use for combustion calculations (cf. Sec. 5.2).

5.4 Intermittency and Fine Structures

The smaller scales of high-Reynolds-number turbulence appear very unevenly distributed in
space. The volume fraction (or mass fraction) occupied by the structures might be called
the intermittency factor. The model presented above contains a fine-structure intermittency
factor, v*, similar to the model by Corrsin (1962). He suggested that the small-scale struc-
ture consisted of vortex sheets occupying a volume fraction proportional to n/L, where L is

an integral scale. This fraction is proportional to R;?’/ 2, Modifying this, Tennekes (1968)
proposed that the small scales were vortex tubes with a volume fraction n2/A2. This quantity
is proportional to R;\l, that is, a larger fraction than in Corrsin’s model. In their model,
Frisch et al. (1978) suggested that eddies of size £, in the inertial range occupy a volume
fraction (£,/L)3~P. From theory, they found that 2.5 was a likely value for the constant D,
while Lesieur (1990) suggested a value closer to 3, based on experimental data. If this model
was applied to the Kolmogorov scales, the volume fraction would have been larger that in the
models by Corrsin and Tennekes.

Kolmogorov (1962) and Frisch et al. (1978) have suggested correcting the 5/3-law (Eq. 16)
for intermittency in the inertial subrange. According to Lesieur (1990:158) these corrections
are too small to allow experimental verification.

Experiments by Kuo and Corrsin (1971, 1972) indicated an intermittent structure somewhere
between the sheets of Corrsin and the tubes of Tennekes, namely a “strip” or “ribbon”-like
geometry. Recent experiments by Dahm et al. (1991) and Bish and Dahm (1995) showed a
sheet-like distribution of the scalar dissipation rate in turbulent flows with Schmidt numbers
Sc > 1, with and without combustion.

Direct numerical simulations are often truncated at a wavenumber of order ™! and therefore

give limited information about the fine structures. Some simulations have been done with
much larger wavenumbers, but these still have a relatively low Reynolds number. Moreover,
simple phenomenological models like sheets or tubes are not likely to depict the instantaneous
details of the complex turbulence structure. However, such models are useful for understanding
and simulating effects of turbulent flow.

The question remains what the fine structures actually are. The Kolmogorov microscale
Reynolds number is unity by definition. These characteristic scales represent volume averages
of the fine structures. The local velocity might be of the same order as the root-mean-square
turbulence velocity, that is, orders of magnitude larger than the Kolmogorov velocity scale.
Following the ideas of Richardson (1922) eddies are likely to break down to smaller scales,
until inertia forces are locally balanced by molecular forces. From this reasoning, small scales
must exist with wavenumbers that are considerably larger than n~!. The lifetime and total
volume of these scales is small, though, and their contribution to the total kinetic energy and
dissipation may therefore be small.
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5.5 Decaying Turbulence and Cascade Model

Modeling of decaying turbulence was discussed above. The viscous terms are important for the
transition from strong to weak turbulence. However, the question arises whether weak decaying
turbulence has relevance to the energy cascade. When the turbulence is weak, ¢’ has the same
magnitude as w”, and then the cascade reduces to a single level. The limit can be drawn
where 2w’ = w"” = w*, that is, when the cascade has two levels. Then, w" = w* = ¢* = 4¢'.
With Cp; = 0.135 and Cpy = 0.5, this gives Ry = 24 in Eq. (32). In other words, it is not
certain that the limitations for the range of Cpy values that fit the decaying turbulence are
relevant for the cascade model.

On the other hand, as discussed in the preceding section, it is likely that the flow has smaller
structures than the fine structures. That is, there is a transfer of energy to higher frequencies
than those of the fine structures in the spectrum. The mechanisms for this energy transfer
and dissipation are believed to be the same as at lower frequencies. Therefore, we believe that
the model ¢ = w” + ¢ is applicable to very low turbulence Reynolds numbers as well, and
that the conceptual formulation should be the same.

5.6 High and Low Reynolds Numbers

In Section 3.2, the model has been compared to data and theory for the inertial subrange of the
energy spectrum. This range occurs at high Reynolds numbers. At lower Reynolds numbers,
the shape of the spectrum changes and there is no inertial subrange, and the applicability of
Kolmogorov’s 5/3-law is reduced.

Combusting flows often have relatively low turbulence Reynolds numbers, due to increased
viscosity and reduced density at higher temperatures. Typically, the kinematic viscosity can
be increased by a factor 10-30 in the reaction zone. As the length scales and velocity scales
are not necessarily changed correspondingly, the limits for “low” and “high” Reynolds number
have been changed.

The Eddy Dissipation Concept is based on one-point turbulence modeling. Thus, there is
no information about the shape of the spectrum. This information can only be found from
two-point closures. A cascade model provides a prescribed shape of the spectrum. When the
turbulence energy is calculated, the area of the spectrum is given, and when the turbulence
Reynolds number is calculated from turbulence energy and length scale (or dissipation), the
width of the spectrum is given.

It has also been found that the high-Reynolds-number spectral data for nonreacting flows
indicated a larger value for the model constant C'py, while reacting flow spectral data and the
decaying turbulence at low Reynolds numbers indicated a lower value. We think this reflects
the situation where a one-point closure has to be a compromise between different regimes
in turbulent flows, and that the set of constants in the model is a reasonable choice that
represent flows at different Reynolds numbers. Moreover, combustion seems to change the
energy spectrum.
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5.7 Reactions and fine structures

Combustion takes place were reactant molecules are mixed and where hot products are mixed
with reactants. In the presented model, this is related to the dissipation of turbulence energy.
The dissipation is spread over a wide range of wavelengths or frequencies but occurs mainly
in the small-scale structures. Here, the local viscous stresses are the largest. The Kolmogorov
scale, 7, is regarded as a representative scale for these motions. Similarly, the mixing mainly
takes place in structures characterized by the Batchelor scale, 7/+/Sc. For the major species
of combustion, and most minor species, the molecular Schmidt number Sc is close to unity.
That is, the mixing and dissipation occur in the same structures. Motions at scales smaller
than the Kolmogorov scales seem to be dependent on the Kolmogorov scales (see e.g. Zhou,
1993). As has been shown in Sec. 3.2, the presented model is in reasonable agreement with
available data for the energy and dissipation spectra.

A further issue is the relevance of isothermal energy spectrum data to combustion. As men-
tioned, only few spectrum data for combusting flows are available. The effect of combustion is
both to increase and to decrease the small scale turbulence. Locally and instantaneously the
motions due to expanding hot gases will enhance the turbulence. On the other hand, larger
local viscosity increases the local dissipation. The referred experiments seem to indicate that
when averaged continously (as in one-point moment modeling) combustion has only minor
effect on the energy spectrum.

6 CONCLUDING REMARKS

The turbulence energy cascade model that formed the basis for the Eddy Dissipation Concept
for turbulent combustion has been presented. The cascade model consists of a stepwise model
for energy transfer from larger to smaller scales. This gave a connection between the fine
structures, where the main part of the molecular mixing takes place, and the characteristics
of the larger eddies, which generally are modeled by turbulence models like the k- model or
similar. The various terms entering the combustion model have been presented and discussed.

The large-eddy, or inertia-dominated, part of the cascade model was related to turbulence vis-
cosity of two-equation models, and to experimental data from the logarithmic boundary layer.
The model was also related to the inertial subrange of the energy spectrum and corresponding
data for different types of flows. In this domain, the model was found to be consistent with
data and existing models. The fine-structure part of the cascade, where viscous forces are
important, was related to models and data for the dissipative range of the energy spectrum,
for small-scale intermittency, and for the late stages of isotropic decaying turbulence. To the
extent that one-point statistical models can supply input turbulence quantities to the cascade
model, the presented model was found to reproduce such flows.

It is concluded that the energy cascade model, which is the basis of the Eddy Dissipation
Concept for combustion, captures important features of reacting and nonreacting turbulent
flows. The expressions and constants are compromises that aim at a wide validity domain.
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Figure 1: Energy cascade model for the transfer of mechanical energy from

the mean flow, through turbulence energy to heat.
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Figure 2: Nondimensional decay of dissipation rate for the present model

compared with the models of Rotta (1951a), Hanjali¢ and Launder (1976) (HL),

and Coleman and Mansour (1991) (CM).
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