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Abstract

A model for predicting the detailed field of entropy production by computational fluid dynamics
(CFD) of turbulent flows with combustion is developed. The model is based on the widely used
Eddy Dissipation Concept for turbulent combustion (EDC) byMagnussen and co-workers. It can
be applied with an infinitely-fast-chemistry assumption orin conjunction with a detailed chemical
mechanism (e.g. GRI Mech). The model is tested for a simple laboratory flame. The results are good
when compared with results from a conventional box-model (overall) entropy-balance analysis.
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INTRODUCTION
For several decades, the methods of 2nd-law or ex-
ergy analysis of thermal and chemical systems have
been developed and utilized. These methods are pri-
marily flowsheeting approaches, where energy and
exergy balances are put up for a number of intercon-
nected subsystems or components (e.g. compres-
sors, combustors, heat exchangers). Then the en-
tropy production or the irreversibility (a.k.a. “lost
work”) of each component can be computed.
In parallel, methods for computing detailed flow-
fields without and with chemical reactions have been
developed (known as computational fluid dynam-
ics, CFD). In the context of turbulent combustion,
Magnussen’s EDC has become a standard model for
technological applications. These methods provide
detailed fields of velocity, temperature and concen-
trations of species throughout combustors or other
devices.
For accurate optimization, a more detailed knowl-
edge of the entropy production may be desired. The
CFD approach can be extended to provide a detailed
field of the entropy production as well. The ba-
sic formulation for this is known from several text-
books. For laminar flows, these equations can be
solved numerically, seee.g. [9]. However, as most
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flows are turbulent, a model for entropy produc-
tion is required, along with the models for turbu-
lent transport, mixing, and combustion. One of the
few attempts (the only?) is presented in [8], where
combustion modeling was based on a prescribed-pdf
method. In the present study, entropy modeling is
based on the EDC [2–4,6].

BASIC THEORY
Transport equations

The notation, terminology and basic assumptions
are primarily those customarily used in fluid-
mechanics and combustion literature (e.g.[2,7,10]).
In some instances this differs from the irreversible-
thermodynamics literature. The exposition follows
an Eulerian and barycentric description, and conti-
nuity is assumed. The flow and scalar fields of re-
acting flows can be described by the following par-
tial differential equations, often known as transport
equations.
Momentum:

∂
∂ t

(ρui)+
∂

∂x j
(ρuiu j)

︸ ︷︷ ︸

ρDui/Dt

=
∂

∂x j
(−pδi j + τi j )+ ρ fi. (1)

Here,ρ is density,ui Cartesian velocity components,



p pressure,τi j is the viscous stress tensor,fi body-
force acceleration, andδi j is the Kronecker tensor.
Mass of species:

ρ
DYk

Dt
=

∂
∂x j

(− jk, j)+Rk. (2)

Here,Yk is the species mass fraction,jk, j the mass
flux, andRk the volumetric reaction rate. When this
equation is summed for all species, the continuity
equation is obtained:

∂ρ
∂ t

+
∂

∂x j
(ρu j) =

Dρ
Dt

+ ρ
∂u j

∂x j
= 0. (3)

Energy:

ρ
De
Dt

=
∂

∂x j

(

−q j −∑
k

hk jk, j

)

− p
∂u j

∂x j
+τi j

∂ui

∂x j
+Q

(4)
Here, e is the specific internal energy of the mix-
ture, q j the heat flux,hk the specific enthalpy, and
Q the volumetric energy production, either by inter-
nal sources (heating) or by radiation. The second
last term is the dissipation term, in the following de-
notedΦ. This equation can readily be rewritten into
an equation for the enthalpy,h = e+ p/ρ .

Flux relations

The preceeding equations includes terms for molec-
ular fluxes. For most combustion cases, and indeed
turbulent combustion cases, the following models
are appropriate. For Newtonian fluids, the viscous
stress tensor is expressed

τi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)

− 2
3µ

∂ul

∂xl
δi j . (5)

Mass diffusion is modeled by Fick’s law,

− jk, j = ρDk
∂Yk

∂x j
, (6)

and heat transfer by Fourier’s law,

−q j = λ
∂T
∂x j

. (7)

Here, the dynamic viscosityµ , the thermal conduc-
tivity, λ , and the specific heat capacity,cp, are for
the mixture, whereas the diffusion coefficient,Dk, is
for the individual species.

Entropy

Later on, we will make use of the fact that the
chemical potential (here used on a mass basis) for
ideal gases is equal to the specific Gibbs function:

µk = gk = hk −Tsk. With material derivatives, the
classical Gibbs’ equation can be expressed

Tρ
Ds
Dt

= ρ
De
Dt

−
p
ρ

Dρ
Dt

−ρ ∑
k

µk
DYk

Dt
. (8)

From this and the energy and mass balances, an en-
tropy equation can be developed on the form

ρ
Ds
Dt

=
∂

∂x j

(

−
q j

T
−∑

k

sk jk, j

)

+
(

−
q j

T2

) ∂T
∂x j

+
1
T ∑

k

(
− jk, j

)
(

∂ µk

∂x j

)

T

+
Q
T

+
Φ
T
−

1
T ∑

k

µkRk. (9)

TURBULENCE MODELING

Averaging

For turbulent reacting flows, it is convenient to in-
clude the density in the averaged quantities. This is
known as mass-weighted Reynolds average or Favre
average [2, 7]. The quantities such as velocity, spe-
cific enthalpy, species mass fraction, and tempera-
ture are decomposed into mean and fluctuating val-
ues asφ = φ̃ + φ ′′, whereφ is a general variable.
The mass-weighted mean value is defined

φ̃ =
ρφ
ρ̄

. (10)

A consequence of this definition is thatρφ ′′ = 0,
whereas in general,φ ′′ 6= 0. The overbar shows aver-
age (statistical expectation). If the density does not
fluctuate, or does not correlate with the other quan-
tity, the Favre average is equivalent to the Reynolds
average.

Continuity

The mass-weighted Reynolds-averaged (Favre-
averaged) continuity equation is

∂ ρ̄
∂ t

+
∂

∂x j
(ρ̄ ũ j) = 0. (11)



Momentum and turbulence transport

The mass-weighted Reynolds average (Favre aver-
age) momentum equation can be written

∂
∂ t

(ρ̄ ũi)+
∂

∂x j
(ρ̄ ũi ũ j) = −

∂ p
∂xi

+
∂

∂x j

(

τ i j −ρu′′i u′′j

)

+ ρ f i. (12)

This is a derivation from Eq. (1). The new quan-
tities appearing in this equation,ρu′′i u′′j , represent
convective transport of mean momentum by the ac-
tion of turbulent motion. Their effect is similar to the
(viscous) stresses, and they are known as Reynolds
or turbulence stresses. From these, the turbulence
energy is defined̄ρ k̃ = 1

2ρu′′i u′′i . A simple and fre-
quently used model for the Reynolds stresses is the
turbulence-viscosity model:

−ρu′′i u′′j = µt

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)

−
2
3

(

ρ̄ k̃+ µt
∂ ũl

∂xl

)

δi j .

(13)
This model is an analogy to Eq. (5). However, the
turbulence viscosity,µt, is not a material property
but a quantity characteristic of the flow. It can be re-
garded as a product of a turbulence length scale and
a turbulent velocity scale. These scales can be ex-
pressed from lengths and velocities of the flow situ-
ation. However, a more general approach is to solve
these scales from transport equations. The by far
most popular model, which will be used here, is the
k-ε model. Then the turbulence viscosity is modeled

µt = ρ̄Cµ
k̃2

ε̃
(14)

Similar quantities, representing turbulence transport
of scalars, will appear in mean-scalar transport equa-
tions in the following. When a general scalar is de-
notedφ , the Reynolds or turbulence fluxes are mod-
eled

−ρφ ′′u′′j = Γφ ,t
∂ φ̃
∂x j

=
µt

σφ

∂ φ̃
∂x j

. (15)

This is known as the general gradient model. The
turbulence Prandtl/Schmidt numbers,σφ , have to be
specified in the model. The mean molecular diffu-
sive flux may also be modeled by the same formal-
ism or by more exact expressions of that term.
It should be noted that models solving transport
equations for the Reynolds stresses are also an re-

alistic option for turbulent combusting flows. How-
ever, these aspects of turbulence modeling are be-
yond the scope of this study.

Turbulence energy and dissipation rate

The modeled transport equation for turbulence en-
ergy can be written

∂
∂ t

(
ρ̄ k̃
)
+

∂
∂x j

(
ρ̄ k̃ũ j

)
= Pk +Dk + Πk− ρ̄ ε̃. (16)

In this equation, the production term,

Pk = −ρu′′i u′′j
∂ ũi

∂x j
, (17)

is closed as the Reynolds stresses already are mod-
eled. The model expressions for the remaining terms
vary according to the chosen model. The diffusion
term is usually modeled by a molecular term and
a turbulence term according to the general-gradient
model,

Dk =
∂

∂x j

((

µ +
µt

σk

)
∂ k̃
∂x j

)

. (18)

The pressure term,Πk, is very often neglected, as
a generic and fully accepted model is still to be de-
veloped. Finally, the dissipation rate of turbulence
energy,

ρ̄ ε̃ = −τi j
∂u′′i
∂x j

, (19)

is solved from a separate transport equation. The
terms as shown here follows the "standard"k-ε
model for high-Reynolds number flows [5].
The dissipation-rate equation can be written

∂
∂ t

(ρ̄ ε̃)+
∂

∂x j
(ρ̄ ε̃ũ j) = Dε +Sε , (20)

where the diffusion term is modeled analogously to
Eq. (18) in the turbulence energy equation,

Dε =
∂

∂x j

((

µ +
µt

σε

)
∂ ε̃
∂x j

)

, (21)

and the source term is modeled as a balance between
production and destruction:

Sε =
ε̃
k̃

(

C1Pk−C2ρ̄ ε̃
)

. (22)



Mass of species

The transport equation for mean mass fraction is

∂
∂ t

(ρ̄Ỹk)+
∂

∂x j
(ρ̄Ỹkũ j)=

∂
∂x j

(

− jk, j −ρY′′
k u′′j

)

+Rk.

(23)
The diffusive molecular and turbulence fluxes of
species mass are often modeled according to the
general gradient model, corresponding to Eq. (15) or
Eq. (18) above. Moreover, the reaction term (species
production term) has to be modeled, see below.

Energy

The energy equation, Eq. (4), can be rewritten to
an enthalpy equation. The averaged version of this
equation is

∂
∂ t

(ρ̄ h̃)+
∂

∂x j
(ρ̄ h̃ũ j) =

∂ p̄
∂ t

+ ũ j
∂ p̄
∂x j

+u′′j
∂ p
∂x j

+
∂

∂x j

(

−q j −∑
k

hk jk, j −ρh′′u′′j

)

+ Φ+Q (24)

In this equation, the third term at the right-hand side
is equivalent to the pressure termΠk in Eq. (16), and
has to be modeled (often neglected).
The treatment of the diffusive fourth term depends
both on the approximations for the heat and the
molecular flux and on the numerical approach.
However, the third part, the turbulence diffusion of
enthalpy, is modeled according to the general gradi-
ent model, Eq. (15).

Combustion modeling

The Eddy Dissipation Concept for turbulent com-
bustion (EDC) [2–4, 6] can be used to model the
interaction between turbulence and combustion. A
cascade model is used to link the fine turbulence
structures (where reactions are assumed to occur) to
the mean flow and large-scale turbulence (that is de-
scribed by turbulence models). The fine structures
are modeled as a reactor, Fig. 1. The reaction rate is
obtained from a mass balance for each species.
When a fast-chemistry assumption (i.e. “mixed
is burnt”) is applied, the average reaction rate in
Eq. (23) is modeled

Rfu = −
ρ̄γ∗ṁ∗χ
1− γ∗χ

Ỹmin, (25)

?
Qrad

Surroundings
ρo, Yo

k , To MFS

Fine structure
ρ∗, Y∗

k , T∗

Ṁin
- Ṁout

-

Figure 1: Schematic fine structure reactor of EDC

where

Ỹmin = min

(

Ỹfu,
1
r
Ỹox

)

. (26)

Here, r is the stoichiometric oxidizer (i.e. air or
oxygen) requirement on a mass basis for the spe-
cific fuel, and subscripts “fu” and “ox” denote fuel
and oxidizer, respectively. The quantitiesγ∗ andṁ∗

are the mass fraction of turbulence fine structures
and its mass exchange with the surrounding fluid,
respectively (cf. Fig. 1). These are related to the
turbulence-cascade model of the EDC [2, 3] and are
expressed as functions of the turbulence energyk̃
and its dissipation ratẽε . The chemical reactions are
assumed to occur in the fine structures,i.e., the small
turbulence scales. The mass exchange is the recipro-
cal of the fine-structure residence time,τ∗ = 1/ṁ∗,
which is proportional to the Kolmogorov time scale.
The quantityχ is the fraction of fine structure that
is reacting, and is a function of the concentrations
of fuel, oxidizer, and product. The implementation
of chemical kinetics is described by [4]. Then the
reaction rate for a chemical species is expressed

Rk = −
ρ̄γ∗ṁ∗

(γ∗)1/3
(Yo

k −Y∗
k ). (27)

Here,Yo
k andY∗

k are the mass fraction of speciesk
entering into and leaving the fine-structure reactor,
respectively. The reacting turbulence fine structures
are regarded as a perfectly stirred reactor, and the
species mass balances of the reactor is solved with
the use of data from a chemical-kinetics mechanism
(e.g.GRI-Mech).
The model in Eq. (27) is obtained from a species
mass balance for the reactor (Fig. 1), while Eq. (25)
is the special case for fast chemistry. An energy bal-
ance for the reactor provide a model for the reactor



and mean temperatures. Similarly, we will use an
entropy balance to model the entropy production.

Mean Entropy Equation

Above, the transport equation for entropy was ex-
pressed from the equations for species mass, conti-
nuity, and energy, by using Gibbs’ relation. How-
ever, for the mean quantities, there exist no sim-
ple relation corresponding to the Gibbs relation or
Eq. (8.)
The equation for the average of the entropy, can be
written as the mean of Eq. (9),

∂
∂ t

(ρ̄ s̃)+
∂

∂x j
(ρ̄ s̃ũ j)

=
∂

∂x j

(

−
q j

T
−∑

k

sk jk, j −ρs′′u′′j

)

+
(

−
q j

T2

) ∂T
∂x j

+∑
k

(

−
jk, j
T

)(
∂ µk

∂x j

)

T

+

(
Q
T

)

+

(
Φ
T

)

−

(

1
T ∑

k

µkRk

)

(28)

The five last terms are the mean entropy production.
It should be noted that the average of the products
and ratios are not readily rewritten into terms con-
taining products of mean values. This means that
models for transport and production of mean entropy
have to be developed.
As an example of the required modeling, the
viscous-dissipation term can be inspected: The dis-
sipation term of the entropy equation can be split in
a mean-flow term and a turbulence term,

(
Φ
T

)

=
(τi j

T

)∂ ũi

∂x j
+

τi j

T
∂u′′i
∂x j

.=
(τi j

T

) ∂ ũi

∂x j
+
(ρε

T

)

.

(29)
Notice here thatε denotes the non-averaged dissipa-
tion rate of turbulence energy, cf. Eq. (19).
Provided that, but only then, the correlations be-
tween temperature and the other quantities are weak,
the mean temperature can be left outside. For the
viscous term, this is a reasonable assumption. How-
ever, for the other terms, the assumption would im-
ply that the fluctuations of temperature and species
mass fractions were small – which is certainly not
the case in turbulent combustion.

ENTROPY MODELING WITH THE EDDY
DISSIPATION CONCEPT
Overall approach

Turbulent motion may be regarded as eddies of sizes
ranging from the external dimensions of the flow
down to the smallest scales where the eddies are dis-
rupted by viscous forces. This can be depicted as an
energy cascade [3]. Combustion takes place at all
scales, but mainly in the smallest scales. There, the
gradients, and hence, the molecular fluxes, are the
largest. Similarly, entropy is produced at all scales
but mainly in the smallest eddies of turbulence.
When modeling the entropy production with the
EDC, the approach will be to split the production
into a large-scale (i.e. mean-flow and large-scale
turbulence) contribution and a fine-structure contri-
bution.

Ps̃ = Ps̃
LS+Ps̃

FS (30)

The large-scale contributions to entropy production
are modeled by using the mean values in the produc-
tion terms:

Ps̃
LS =

τ i j

T̃

∂ ũi

∂x j
+

λ
T̃2

(
∂ T̃
∂x j

)2

+∑
k

Ru

Mk

ρ̄Dk

Ỹk

(
∂Ỹk

∂x j

)2

.

(31)
Here,Ru is the universal gas constant, andMk is the
molar mass. The radiation term is neglected in this
study. In the EDC, the reactions are assumed to take
place in the fine structures, and hence, there are no
large-scale contributions from reactions.

Turbulence fine-structure entropy modeling

In the EDC, a mass-weighted (Favre) average (cf.
Eq. 10) is expressed [2,6] as

ϕ̃ = γ∗χϕ∗ +(1− γ∗χ)ϕo. (32)

The general variableφ can represent the entropy
production,σ . Thus,ρ̄ σ̃ = ρσ is the mean of the
sum of entropy-production terms of Eq. (9), andσ ∗

andσo are the entropy production rates on a mass
basis of the reactor and its surroundings, respec-
tively. Here, in conjunction with Eq (30), the contri-
bution of fine-structures to mean entropy production
will be modeled by

Ps̃
FS = ρ̄ σ̃FS = ρ̄ (γ∗χσ ∗+(1− γ∗χ)σo) . (33)



This formulation is based on the assumption in EDC
that all reactions take place in the reactor. Further-
more, the major part of localized heat and mass ex-
change due to reactions also take place in the reactor
or its vicinity. After exiting the reactor, the products
are mixed with the surroundings.
Similar to the mass and energy balances [2], an en-
tropy balance for the reactor can be put up to deter-
mine the reactor entropy production,

σ ∗
1 = ṁ∗∑

k

(Y∗
k s∗k −Yo

k so
k)−

Qrad

ρ∗T∗
(34)

Here, the notation of the EDC is followed: The su-
perscripts∗ and o refer to properties of the reactor
and the surroundings of the reactor, respectively. ˙m∗

is the mass inflow rate to the reactor divided by the
mass of the reactor. Its reciprocal is the residence
time of the reactor. The last term is entropy trans-
ferred by radiation inflow, cf. Fig. 1. In this study,
radiation term is neglected. However, when a ra-
diation model is implemented with the combustion
model (for energy exchange), it can readily be im-
plemented in the entropy production model as well.
The expression above does not include the post-
reaction mixing. This can be modeled

σ ∗
2 = ṁ∗∑

k

(Y∗
k (s∗k − s̃k)) (35)

for the mass exiting from the fine-structure reactor.
Here,s̃k denotes the entropy of the species based on
mean composition, pressure and temperature. The
two contributions should be added;σ ∗ = σ ∗

1 + σ ∗
2 .

At this stage, the last term of Eq. (33),σo, is left for
future considerations.
The model in Eqs. (33)-(35) is decoupled from the
specific formulation of the terms in Eq. (9). The
idea of this model is that reactants enter the reactor
with properties of the surroundings, whereas prod-
ucts leave the reactor with properties of the reactor.
The model can be used both with the "fast chem-
istry" assumption, and with a detailed mechanism
for chemical kinetics. When EDC is implemented
in a code, the quantitiesY∗

k , Yo
k , T∗, andTo are al-

ready computed. Then, the mole fractionsX∗
k and

Xo
k and the partial pressuresp∗k andpo

k can readily be
calculated. Eventually, the only task remaining is to
determine the specific entropies

s∗k = sk(T
∗, p∗k) and so

k = sk(T
o, po

k). (36)

For readers familiar with the EDC, it can be men-
tioned that a simpler expression involvingỸmin (cf.
Eq. 25) is not obtainable for the model in Eq. (34).

The investigations of [1] indicate that the reactions
as such only give a minor contribution to entropy
production, compared to the associated mass and en-
ergy exchange. Basically, the model in Eqs. (33)-
(35) should be a model including all the local-
ized (small-scale) entropy-producing processes in
the turbulent combusting flow. That is, all processes
(e.g. local mass transfer) that affects the field of
temperature and partial pressures. Even though the
individual processes are not specified, when their
effects are seen in the temperature and composi-
tion fields, they are also included in the entropy-
production model.

PREDICTIONS

For exemplary calculations, the model was applied
to a jet flame. The fuel is a 1:1 mixture of H2

and N2, and the fuel jet diameter, bulk velocity,
and Reynolds number are 8 mm, 34.8 m/s, and
10000, respectively. The jet is situated in a air
coflow with diameter 400 mm, and velocity 0.2 m/s.
Both flows have temperature 300 K. This is case
“H3” in the database of the International Workshop
on Measurement and Simulation of Turbulent Non-
premixed Flames. The predictions were made us-
ing the general-purpose CFD code Spider, which is
based on finite volumes and non-orthogonal curvi-
linear computational mesh. In this case, a 2-dimen-
sional rectangular mesh with axial symmetry was
used. The turbulence model was the standardk-ε
model, except for the round-jet modification of the
constantC2 = 1.83 (Eq. 22) and turbulence Prandtl
and Schmidt numbers of 0.5. Buoyancy was in-
cluded in the momentum equation. Combustion was
modeled with the EDC and fast-chemistry assump-
tion (Eqs. 25–26). Thermophysical data, includ-
ing enthalpy and entropy, were obtained from the
Chemkin Library.

The inlet boundary was specified as fixed values.
For the jet flow, these were approximated to calcula-
tions of a fully developed pipe flow. The outlet was
a parallel flow, and at the outer boundary zero radial
transport was assumed.
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Figure 2: Geometry and computed mean tempera-
ture field of the flame

Axial position (m)

R
ad

ia
lp

os
iti

on
(m

)

0 0.2 0.4 0.6
0

0.1

0.2

0.3
Entropy production rate (J/Ksm^3)

1E+07
1E+06
100000
10000
1000
100
0

Figure 3: Mean entropy production rate
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Figure 4: Zoomed excerpt from Fig. 3
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Figure 5: Entropy production due to mean tempera-
ture gradients, 2nd term of Eq. (31)
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Figure 6: Fine-structure contribution to entropy pro-
duction model in Eqs. (33)-(35)

RESULTS AND DISCUSSION
The geometry and the simulated mean temperature
field of the jet are shown in Fig. 2. This and the
species field (not shown) resembled experimental
data quite well. The modeled mean entropy pro-
duction is shown in Figs. 3–4. This is the sum of
the contributions from the mean-field, Eq. (31), and
from turbulence fine structures, Eqs. (33)-(35). In
the former, the heat-flux contribution, that is, the 2nd
term of Eq. (31), was by far the largest. This term
gave some relatively large local values and is shown
in Fig. 5. The major production, however, was found
in the fine-structures, shown in Fig. 6. Here, the ef-
fects of chemical reactions and pre-reaction mixing
are included through the model in Eq. (34). How-
ever, the main contributor was the post-reaction mix-
ing term, Eq. (35). This finding corresponds well
with the result obtained in [1].
No experimental data are available on entropy pro-
duction. However, when the volumetric entropy pro-
duction rate is integrated over the computed domain,
it should be comparable to results of an overall en-
tropy balance for the same case. Here, such a bal-
ance was evaluated based on the mean values. Then,
the sum of entropy inflow to all inflow cells minus
the entropy outflow from all outflow cells was 8.62
W/K. The inflow has no concentration fluctuations

and only small temperature fluctuations. In the out-
let, these fluctuations will be larger, and hence, the
outflow entropy somewhat larger. Thus, the entropy
production was somewhat overestimated when using
the overall balance based on mean values. Never-
theless, it should be a good indication of the correct
result.
The entropy production computed from the model
presented above, was 6.14 W/K, or 71 % of that
found from the simple balance. The fine-structure
model gave 5.88 W/K, of this 2.36 W/K from
Eq. (34) and 3.52 W/K from Eq. (35), while the
mean-temperature term (Eq. 31) gave 0.25 W/K.

CONCLUDING REMARKS
The Eddy Dissipation Concept (EDC) for turbulent
combustion has been extended to include modeling
of entropy production. The results obtained are very
good when compared with an overall entropy bal-
ance of the same case.
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