Department of Energy and Process Engineering EP8110 Exergy Analysis

Exercise 8

Problem 1 – Separation of gases

A gas mixture (stream 1), for instance flue gas from combustion, enters a separation process (SP). The process has two outflowing streams: In one of these (stream 2), some of the gases are concentrated, while the other (stream 3) comprises the remaining gases. Normally stream 2 will have one or a few main components and small amounts of the other components.

The SP is a steady flow, steady state process. There are no chemical reactions and no other flows of matter.

Assume that the composition (mole fractions $x_{i,1}$) is known for stream 1, that the degree of separation,

 $\beta_i = n_{i,2} / n_{i,1}$ is known (or specified) for all gases, that the inflow and outflow occurs at the temperature of the environment (T₀), and that the flows are ideal gases

a) Develop an expression for the theoretical minimum work input for the separation process (i.e., the increase in chemical exergy or, alternatively, the decrease in entropy). The model should be suitable for implementation in a spreadsheet or other program (needed in b).

Hint: calculate per mole of something, e.g. per mole of stream 1 or per mole of a certain species in stream 2.

b) Use your model to calculate the minimum work input for separation of 1 kmol pure CO₂ from from a flue gas containing 1) 3,5% CO₂ (typically gas turbine) 2) 11% CO₂ (typically gas engine or coal-fired power plant), when in both cases the degree of separation (β_{CO_2}) ranges from 0,3 to 0,9. The

environmental temperature is 15 °C.

Repeat the calculations for ambient temperatures -20 °C and (+)40 °C

Hint: Unless you think you will find the model in a) useful in later work, make the additional simplifications that are relevant for b) before implementing it in the spreadsheet/program. Notice that for ideal gases, it does not matter which gases other than CO_2 that are present.

Problem 2- Utilization of low-temperature energy

A developer/inventor seeks your organization for funding for the development of a device that will utilize the thermal energy of discharge gases and water to produce electricity. The thermal efficiency should be 15-20%, for discharge flows at 70 °C (when a large amount of seawater is available for cooling 10 °C).

Your manager asks you to evaluate the request – based on thermodynamics. Is the invention possible - theoretically and realistically?

Problem 3 – the Air Car

The Air Car uses compressed air as "fuel". It has 4 containers, each 90 liter, of compressed air. Fully charged, the pressure is 300 bar. For simplicity of calculations, we can assume that the state of atmospheric air is 300 K and 1 atm (1.01325 bar). For calculations the attached table can be used.

--Estimate the range of the car (max. driving distance before refilling).

hint: determining the exergy of the compressed air is a sub-task of the problem; in addition you have to think a bit practically.

Table excerpt from

PROPERTIES OF GASEOUS AIR

W.C. Reynolds: "Thermodynamic properties in SI", Dept. Mech. Engr., Stanford University, 1979

P, MPa	200	200	400		т,к	700	***	000	1000
(Isat,K)	200	300	400	500	600	/00	800	900	1000
0.050 v,m ³ /kg (76.24) h,kJ/kg s,kJ/(kg•K) u,kJ/kg	1.147 359.56 4.3298 302.22	1.722 459.96 5 4.7368 5 373.86 4	2.297 60.79 .0269 45.95	2.871 662.81 5.2544 519.25	3.445 766.71 5.4438 594.44	4.020 872.87 5.6074 671.89	4.594 981.41 5.7523 751.72	5.168 1092.23 5.8828 833.83	5.742 1205.16 6.0018 918.04
0.101325 v,m³/kg (81.82) h,kJ/kg s,kJ/(kg•K) u,kJ/kg	0.5653 359.31 4.1261 302.03	0.8497 459.85 5 4.5337 4 373.75 4	1.133 60.73 .8239 45.88	1.417 662.79 5.0516 519.20	1.701 766.70 5.2410 594.40	1.984 872.88 5.4046 671.86	2.267 981.43 5.5495 751.69	2.551 1092.26 5.6800 833.81	2.834 1205.19 5.7990 918.03
0.14 v.m ³ /kg	0.4088	0.6149 0	.8204	1.026	1.231	1.436	1,641	1.846	2.051
P, MPa				т	,К				
	200	300	400	500	600	700	800	900	1000
14. v,m [⇒] /kg h,kJ/kg s,kJ/(kg•K) u,kJ/kg	0.00328 0. 292.25 4 2.4561 3 246.28 3	00617 0.0 33.18 54 .0353 3. 46.76 42	0859 8.32 3672 8.10	0.01084 658.05 3.6121 506.28	0.01302 766.80 3.8104 584.54	0.01515 876.27 3.9791 664.12	0.01726 987.19 4.1272 745.50	0.01936 1099.80 4.2598 828.81	0.02144 1214.08 4.3802 913.95
20. v,m ³ /kg h,kJ/kg s,kJ/(kg•K) u,kJ/kg	0.00244 0.1 277.13 4 2.2967 2 228.33 3	00444 0.0 25.39 54 .9053 3. 36.54 42	0618 0 4.95 2501 1.27	0.00780 657.23 3.5008 501.25	0.00935 767.64 3.7021 580.66	0.01086 878.29 3.8727 661.04	0.01235 990.07 4.0219 743.02	0.01383 1103.34 4.1553 826.78	0.01529 1218.14 4.2763 912.29
30. v,m ³ /kg h,kJ/kg s,kJ/(kg•K) u,kJ/kg	0.00193 0.0 267.96 4 2.1437 2 209.97 3	00318 0.0 17.41 54 .7549 3. 22.16 41	0436 0 1.77 1136 1.12	.00546 657.30 3.3716 493.61	0.00651 769.98 3.5771 574.68	0.00753 882.29 3.7502 656.26	0.00854 995.34 3.9012 739.13	0.00953 1109.58 4.0357 823.59	0.01052 1225.16 4.1575 909.66
50. v,m ³ /kg h.kJ/kg	0.00159 0.0	00226 0.0	0295 0	.00362	0.00426	0.00489	0.00550	0.00610	0.00670