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Suggested solutions TEP4170 Heat and combustion technology 7 June 2019 

by Ivar S. Ertesvåg. Revised  7 June 2019. 

1) 

The basic equation (given): 

( ) ( ) k
k k j k

j j j

Y
Y Y u D R

t x x x
  

   
        

  

 

Note: In the exam, due to a typo, the   was left out from  D in the 2nd RHS term. Then it has to 

be interpreted into D (i.e. similar to dynamic viscosity vs. kinematic viscosity). This does not 

affect the answer. 

Introduce the Reynolds decomposition, 
i i iu u u  ;

k k kY Y Y   . 

( ( )) ( ( )) ( )k k k j k j k j k j k k k

j j j
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Assume (cf. problem) that density  and diffusivity D  do not fluctuate. 

Average the entire equation, that is, each term. Here k kY Y ; 0kY   ; 0k j k jY u Y u    ,

0k j k jY u Y u    and we achieve the following equation (when the double-correlation term is moved 

over the the right-hand side): 

( ) ( ) k
kk k j k j

j j j

Y
Y Y u D Y u R

t x x x
  

   
          

 

The terms are (enumerated from left): 1) change of mean species mass with time; 2) transfer of mean 

species mass with mean flow; 3) transport/exchange of mean species mass by molecular diffusion; 4) 

transport/exchange of mean species mass due to turbulent motions; 5) mean species mass reaction 

(production) rate.   

New quantities are: 

kY  and 
ju  are the mean values of  kY  and 

ju , i.e. mean species mass fraction of species k  and mean 

velocity in 
jx  direction. k jY u    are the fluxes of mean species mass in 

jx  direction due to turbulent 

motions.   kR  is the mean of the volumetric reaction (production) rate of species k . 

 

2) 

A conserved scalar is a quantity with zero source term. 

For a global reaction 1 kg fu +  kg ox  (1 ) kg prodr r  ,  where r  is the stoichiometric mass of 

oxidizer for the fuel, the relations between the reaction rates are  ox fuR rR and prod fu(1 )R r R   . The reaction 
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rates are the source terms for  oxY , fuY and prodY . Accordingly, the quantities fu ox( )rY Y  , fu prod((1 ) )r Y Y    

and prod((1 ) )oxr Y rY   have source terms , respectively, fu ox 0rR R  , fu prod(1 ) 0r R R    and ox prod(1 ) 0r R rR   . 

This means that the three quantities (or variants divided by r or 1 r ) are conserved scalars with the 

indicated simplifications. 

Other examples:  

The elemental mass is conserved. Thus the elemental mass fractions are conserved scalars.  (That is, with 

the assumptions normally made in combustion engineering: no relativity considered.) 

Mass fractions of inert species (e.g. Ar and in some cases N2) have zero sources. Therefore, these are 

conserved scalars. 

With some simplifications (no radiation, weak pressure gradients, negligible viscous dissipation, negligible 

effects of body forces) the total enthalpy (formation+thermal+kinetic) has zero (or negligible) source 

term, and is hence, a conserved scalar. 

The mixture fraction  is defined by 2

1 2

mix 


 





;  or 1 2(1 )mix        

 where  is a conserved scalar, 1 and  2 are its values at two different inflows (1) and (2), and mix its 

value in the mixture.  

 

3) 

The reaction balance is assumed as in Problem 2, with methane as fuel, air as oxidized and 17,1 kg/kgr  . 

Here, “product” includes the N2 associated with the O2 consumed in the reaction 

 

If inlet (1) contains pure fuel (
fu,1 1Y  ,

ox,1 0Y  ) and inlet (2) is pure oxidizer (air) (
fu,2 0Y  ,

ox,2 1Y  ), the compound function can be expressed as 

fu ox fu ox fu ox

1 2

1 1 1 1 1
(1 ) (1 0) (0 1)(1 ) (1 )Y Y Y Y Y Y

r r r r r
     

     
                    

     
 

At stoichiometric conditions, that is when ox fuY rY , the mixture fraction is denoted s  : 

fu ox

1 1
0 (1 )s sY Y

r r
 

 
     

 
  or 

1

1
s

r
 


 

With the given , 17,1 kg/kgr   we obtain  1/ (1 17,1) 0,055s    . 

 

From the relations above is seen that fu ( )Y  is linear. Furthermore, it goes from unity at inlet (1) (pure fuel) 

where 1   to zero at stoichiometric conditions ( s  ). On the lean side, the fuel is consumed. 

Hence, 
fu

1/ (1 ) 1
( ) 1 ((1 ) 1)

1 1 1/ (1 )

s

s

r
Y r

r r

  
 



  
     

  
 for s  ,    and fu ( ) 0Y    for s  . 

Similarly, the air (oxidizer) goes linearly from unity at inlet (2) ( 0  ) to zero at s  . 

Hence, 
air ( ) 1 1 (1 )

s

Y r


 


      for 0 s    ,   and air ( ) 0Y   for 1s   . 

 

Product is linear from prod ( 0) 0Y    to prod ( ) 1sY   , and from there linear to prod ( 1) 0Y    . 
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Alternatively expressed, 
prod fu air( ) 1 ( ) ( )Y Y Y      

That is, 
prod ( ) 1 1 (1 ) (1 )Y r r         for 0 s   , and 

prod

1 1
( ) 1 ((1 ) 1) (1 )

r
Y r

r r
  


       for 1s   . 

 

Strictly, the problem did not ask for mass fractions of individual species (other than fuel).  

Oxygen and nitrogen are (given) fractions of the air, 
2O air( ) 0,233 ( )Y Y  ; 

2 air( ) 0,767 ( )NY Y   

Similarly, the product consists of CO2, H2O and N2 and their mass fractions can be expressed from the 

product mass fraction. 
 

4)  

Models using a prescribed probability density function (pdf). 

The pdf is expressed in terms of a characteristic variable. For non-premixed flames, usually the mixture 

fraction. When relevant quantities (species mass fractions, temperature, etc.) are expressed as functions of 

the mixture fraction, these functions can be integrated with the pdf over the sample space (from 0 to 1 for 

the mixture fraction) to obtain the mean values. 

The pdf has to parameters, which are determined by solving modeled “transport” equations of two 

quantities, usually (for non-premixed flames) the mean and variance of the mixture fraction.  

A condition for this type of model is that the mixture fraction is a representative variable. This can be true 

for flames in the flamelet regime; i.e. thin flame sheets not to much broken by turbulent eddies. That is, 

when the chemical time scale is smaller than the Kolmogorov time scale. 

 

5) 

 1
fu min fu ox prod1

min , , B
r r

R A Y A Y Y Y
k k

 
 


   ;  and then fuoxR rR , prod fu(1 )R r R    

A and B are model constants, and r  is the stoichiometric mass-based oxidizer requirement of the fuel. 

The mean mass fractions 
fuY and 

oxY are determined from the transport equations (cf. Problem 1). The 

mean product mass fraction can also be found from an equation, but more simply from the relation  

prod fu ox1Y Y Y   . 

The turbulence energy k  and its dissipation rate   are found from some turbulence model (with 

equations). 

This model is limited to reactions that  can be represented by one or more fast, global, irreversible (one-

way) reactions. (If there are more reactions, a priority has to be defined for the access to the limited 

supply of oxidizer.) 

 

6) 
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This is for the inner part of the boundary layer of a flow close to a wall, except the very most close to the 
wall layer.  

1u  is the streamwise mean velocity of a boundary layer flow; 
2x  is the coordinate normal to the wall (

2 0x  at the wall);  
1/2

w /u    is the shear velocity; w is the shear stress at the wall;  is the density 

of the fluid;   is an empirical constant (von Kármán constant) for boundary layer flows. 
 
In this zone the turbulence transfer, including turbulence stress dominates over molecular transfer, inlcuing 

viscous stresses. Moreover, the shear stress is assumed approximately constant.  Hence, 
2

1 2 wu u u     . 

In this zone, assume balance between production and dissipation of turbulence energy: 1
1 2

2

du
u u

dx
    

Introduce the quantities for the shear stress and the gradient; 

3
2

2 2

u u
u

x x

 

 

  . This is the wall function 

for the dissipation rate. 

 

The turbulence shear stress can be expressed from a turbulence viscosity: 1
1 2 t

2

du
u u

dx
      

Introducing 
2

w u  for the stress and the given relation for the gradient gives  
2

t

2

u
u

x


 


  . 

This can be rearranged to t 2u x  . 

 

In a k  -  model, the turbulence viscosity can be expressed 
2

t /C k  . Introducing the expressions 

for   and t above, provides 
4 2u C k   or 2 /k u C  . 

 

7) 

The given relation is developed for the same zone as the one given in Problem 6; that is, the near wall zone 

of a wall boundary layer (although not the very thin layer just adjacent to the wall) 

The heat flux directed from the wall can be expressed as  t
2

2

p

T

dT
q C

dx




 

 
   

 
,  

where  and T are the molecular and turbulence Prandtl numbers, respectively, and pC is the specific heat 

capacity. These are assumed as constants in the near-wall layer. Furthermore, in this layer, the heat flux can 

be approximated to a constant, which has to be that at the wall; 2 wq q .  

 

Rearranging the expression, and using t 2u x  (from Problem 6) 

2

w 21

p

T

C dx
dT

q u x






  




 
 

 

, or  

2

w 21

p

T

u x
d

C u
dT

q u x







 



  

 
   

 
 

 

, or 2

w

2

1

p

T

C u dx
dT

q
x





 







 

 
 
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Integrating the left-hand side from the wall (temperature wT at 
2 0x  ) to a point in the layer (temperature 

T at 2x ),  
w

w w

LHS ( )

w

T
p p

T

C u C u
dT T T

q q

   
   .   

This equals the non-dimensional temperature, LHST   . 

 

Integration of the right-hand side have to be done in two steps. For the thin layer at the wall, molecular 

diffusion dominates, while in the next layer, the turbulence diffusion dominates. The boundary between 

these two zones is denoted 
2,dx  

2,d 2

2,d

2
2 1 2 2,

20

RHS const ln ln

x x

T T T
d

x

dx
dx x x

x

  


  

 




  


       

 

Here, the last term is a constant, and the two constant terms can be merged into one constant, 
TC ; 

furthermore, the quantity /T T    is introduced.  Now ,  
2

1
RHS ln T

T

x C


   

Setting the LHS and RHS together, we obtain the expression  
2

1
ln T

T

T x C


     

 
8) 
Reaction orders,  1f: 1st order; 1r, 2f and 2r: 2nd order 

 

Reaction (production) rates from the reactions given (consumption rates are the negative of these) 

23
1 3 1 2 2 3 2 2

[O ]
[O ] [O][O ] [O][O ] [O ]f r f r

d
k k k k

dt
      

22
1 3 1 2 2 3 2 2

[O ]
[O ] [O][O ] 2 [O][O ] 2 [O ]f r f r

d
k k k k

dt
   

2

1 3 1 2 2 3 2 2

[O]
[O ] [O][O ] [O][O ] [O ]f r f r

d
k k k k

dt
     

 

Radicals, here monatomic O, are far more reactive than the more stable compounds O2 and O3. (Indeed, O3 

is less stable than O2, however, relatively stable in comparison with O). O can be assumed to be consumed 

as soon as it is formed.  

Assuming steady-state for O  ( [O] 0d dt  ), gives from the expression above 
2

1 3 2 2

1 2 2 3

[O ] [O ]
[O]

[O ] [O ]

f r

ss

r f

k k

k k





  

9) 
The overall (global) reaction balance can be written as: 

1
8 18 2 2 2 2 2 22

C H 12,5(O 3.76N ) 8(1 )CO 8 CO 9H O+ 8 O 12,5 3.76Na a a         

 

The amount of flue gas (“wet”, i.e. with H2O included in the mixture when other species are specified) is 

fg

fuel

8 8 8 9 4 47 64 4
n

a a a a
n

         ,  while the amount of CO is CO

fuel

8
n

a
n

 . 
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The mole fraction of CO in the flue gas CO
CO

fg

8 2
0,035

64 4 16

n a a
X

n a a
   

 
 ; Solving this: 0,29a    

Amount of emitted CO: CO

fuel

8 2,3 mol/mol
n

a
n

   

 

Emission index: CO CO CO
CO

fu fu fu

28 kg/kmol
EI 2,32 0,57 kg/kg

114 kg/kmol

m n M

m n M
       

Fraction of heating value: 
LHV,CO CO LHV,CO

LHV,fuel fuel LHV,fuel

283 kJ/mol
2,32 0.13 13%

5075 kg/mol

H n h

H n h
       

 
Comment: modern cars have catalytic converters, and emit much less CO. However, that is from the 
tailpipe. The CO content in the flue gas leaving the engine has approximately the value above. The 
remaining chemical energy is converted to thermal energy in the catalytic converter. 
 
 

10) 

The fuel mass balance and energy balance for the reactor in steady state can be expressed as, respectively, 

  *

fu fu fu

1

*

oR Y Y


     and  * *( )o o

p fu fu LHVc T T Y Y h    ,   

where 
pc is the specific heat (average for the relevant temperatures) and LHVh is the lower heating value of 

the fuel. 

The reaction rate can also be expressed from composition and temperature 
* * *

fu ox( ) exp( / ( ))m n

fu uR Y Y E R T   , where m and n are reaction orders, E  activation energy and uR  the 

universal gas constant. 

For the discussion, it can be convenient to define a “degree of reaction” 

*

fu fu

fu

o

o

Y Y
Y

Y


  , which is the 

fraction of inflow mass that is consumed in the  reactor.  

The energy balance gives a linear 
*Y T relation, 

*
*fu fu

fu fu

( )
o

p o

o o

LHV

cY Y
Y T T

Y Y h


    

The mass balance gives: 

*
* * *fu fu

fu fu ox

fu fu fu

* *
( ) exp( / ( ))

o
m n

uo o o

Y Y
Y R Y Y E R T

Y Y Y

 
     

At low conversion (high availability of fuel and oxidizer) this forms an exponential relation. When the 

conversion approaches completion, the lack of reactants limits the reaction towards the asymptote 1Y   

Hence, an S-shaped curve will be seen. 

Both curves will start in 
*( , ) (0, )oY T T  . Possible conditions requires both relations to be satisfied; 

hence 
*( 0, )oY T T  is a trivial solution to the system of the two equations. The S-shaped curve 
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describing the mass balance may cross the linear energy balance in two points, touch it in one point, or not 

in any other point. In the latter case only the trivial solution remains, which means extinction. 

With two solutions (in adition to the trivial no-reaction solution), the upper one will be stable, while the 

lower will be unstable. This can be seen by perturbing the solution. 

Reducing the temperature at the lower solution will reduce the reaction rate, which will reduce the heat 

release, which will reduce the temperature, and so on to no reaction. Alternatively, increasing the 

temperature will increase the reaction rate, increase the heat release, increase the temperature and so on to 

the other solution: 

Reducing the temperature at the upper solution will reduce the reaction rate, make more fuel available 

(notice that reactant availability is a limiting factor at the high conversion ratio), which increases the 

reaction rate (back the solution). Increasing the temperature will increase reaction rate, make the reactants 

even more scares, which decreases the reaction rate (back to the solution). Thus, it is stable. 

 

 

 


