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1) 

Sketch: see textbook. 

Main elements:  

- the transverse motion from one position to another with (transverse) distance  causes a streamvise 

velocity difference 
du

u u
dy

    ,  

- due to continuity, the  the transverse velocity disturbance will be of the same magnitude, v u   
- the transfer of momentum due to the motion (aka turbulence stress) is represented by these quantities,

2

2

turb 1 2

du du du
u u u v

dy dy dy
    

 
         

 
  

- the sign of the stress has to be that of the gradient; and the constant of proportionality can be absorbed 

into the length scale. Hence (with the coordinate symbols used in the problem), 

 

- Expressed with a turbulence viscosity, the turbulence stress is 1
1 2 t

2

du
u u

dx
      

Combining the latter two expression, we get 
2 1

t

2

du

dx
   .     

(Alternatively, include the density to form the dynamic turbulence viscosity   t t  ) 

 

2) 

Definitions:  
1/2

w /u    

where 1u  is the streamwise mean velocity of a boundary layer flow; 
2x  is the coordinate normal to the wall 

(
2 0x  at the wall);  

1/2

w /u    is the shear velocity; w is the shear stress at the wall;  is the 

density of the fluid;   is an empiricak constant (von Kármán constant) for boundary layer flows. 

  
Assume a simple boundary layer; flow alon a plane wall, one dominating mean velocity gradient.   

Near the wall, gradients parallel to the wall are much smaller than those normal to the wall, and velocities 

approaches zero, so that the mean momentum equation simplifies to 

 12 1 2

2

0
d

u u
dx

     ,  or 12 1 2 constu u     . The constant has to equal the wall shear stress,
2

w u  .  

In a part of this near-wall zone, the turbulence stress dominates. Hence, 
2

1 2 wu u u      

In this zone, assume balance between production and dissipation of turbulence energy: 1
1 2

2

du
u u

dx
      

Introduce the quantities for the shear stress and the gradient; 

3
2

2 2

u u
u

x x

 

 

   This is the wall function 

for the dissipation rate. 

The turbulence shear stress can be expressed from a turbulence viscosity: 1
1 2 t

2

du
u u

dx
      

2 1 1
1 2

2 2

du du
u u

dx dx
    
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Introducing 
2

w u  for the stress and the given relation for the gradient gives  
2

t

2

u
u

x


 


  . 

This can be rearranged to t 2u x  . 

 

3) 

The given relation is developed for the same zone as the one given in Problem 2; that is, the near wall zone 

of a wall boundary layer (although not the very thin layer just adjacent to the wall) 

The heat flux directed from the wall can be expressed as  t
2

2

p

T

dT
q C

dx




 

 
   

 
,  

where  and 
T are the molecular and turbulence Prandtl numbers, respectively, and

pC is the specific heat 

capacity. These are assumed as constants in the near-wall layer. Furthermore, in this layer, the heat flux can 

be approximated to a constant, which has to be that at the wall; 2 wq q .  

 

Rearranging the expression, and using t 2u x  (from Problem 2) 

2

w 21

p

T

C dx
dT

q u x






  




 
 

 

, or  

2

w 21

p

T

u x
d

C u
dT

q u x







 



  

 
   

 
 

 

, or 2

w

2

1

p

T

C u dx
dT

q
x





 







 

 
 

 

 

Integrating the left-hand side from the wall (temperature wT at 
2 0x  ) to a point in the layer (temperature 

T at 2x ),  w

w w

LHS ( )

w

T
p p

T

C u C u
dT T T

q q

   
   .   

This equals the non-dimensional temperature, LHST   (given in the problem). 

 

Integration of the right-hand side have to be done in two steps. For the thin layer at the wall, molecular 

diffusion dominates, while in the next layer, the turbulence diffusion dominates. The boundary between 

these two zones is denoted 2,dx  

2,d 2

2,d

2
2 1 2 2,

20

RHS const ln ln

x x

T T T
d

x

dx
dx x x

x

  


  

 




  


       

 

Here, the last term is a constant, and the two constant terms can be merged into one constant, TC ; 

furthermore, the quantity /T T    is introduced.  Now ,  
2

1
RHS ln T

T

x C


   

Setting the LHS and RHS together, we obtain the expression given in the problem.  

 

 

4) 

Multidimensional joint pdf: 

-The state is a set of velocities and scalars 1 2 3 1( , , , ,..., )nu u u   , i.e. a multidimensional vector. 

- The state is realized with a (multi dimensional) distribution function F , and the corresponding pdf f . 

- Any quantity, say G , can be described as a function of the state (the vector of variables) 

- The mean value of this quantity is found as the integral of the quantity and the pdf over the realization of 

all variables. 
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The pdf is found from solving a “transport” equation for it. This equation contains terms for convection, 

body forces, pressure and reactions, viscous forces and molecular diffusion. Among these, the viscous and 

diffusive terms need modelling, while the reaction terms are closed and need no further modeling. 

(contrary to the corresponding terms e.g. in Reynolds averaged equations) 
 

 
5) 

The mixture fraction  is defined by 2

1 2

mix 


 





;  or 1 2(1 )mix        

 where  is a conserved scalar, 
1 and  

2 are its values at two different inflows (1) and (2), and 
mix its 

value in the mixture.  

A conserved scalar is a property with zero source (or sink) term. 

 

The reaction balance is assumed as a single-step global reaction 1 kg fu +  kg ox  (1 ) kg prr r  , 

which is fast and complete.  r is the stoichiometric mass of air, here given as 17,1 kg/kgr  . 

the reaction rates (source terms) are related as 
fu prod

1 1

1
oxR R R

r r
 


 

The combined term 
fu

1
oxR R

r
 becomes zero, and it is the source term of

fu ox

1
Y Y

r

 
 

 
, which 

therefore is a conserved scalar. 

 

If inlet (1) contains pure fuel (
fu,1 1Y  ,

ox,1 0Y  ) and inlet (2) is pure oxidizer (air) (
fu,2 0Y  ,

ox,2 1Y  ), the compound function can be expressed as 

fu ox fu ox fu ox

1 2

1 1 1 1 1
(1 ) (1 0) (0 1)(1 ) (1 )Y Y Y Y Y Y

r r r r r
     

     
                    

     
 

 

At stoichiometric conditions, that is when ox fuY rY , the mixture fraction is denoted s  : 

fu ox

1 1
0 (1 )s sY Y

r r
 

 
     

 
  or 

1

1
s

r
 


 

With the given , 17,1 kg/kgr   we obtain  1/ (1 17,1) 0,055s    . 

 

From the relations above is seen that fu ( )Y  is linear. Furthermore, it goes from unity at inlet (1) (pure fuel) 

where 1   to zero at stoichiometric conditions ( s  ). On the lean side, the fuel is consumed. 

Hence, 
fu

1/ (1 ) 1
( ) 1 ((1 ) 1)

1 1 1/ (1 )

s

s

r
Y r

r r

  
 



  
     

  
 for s  ,    and fu ( ) 0Y    for s  . 

Similarly, the air (oxidizer) goes linearly from unity at inlet (2) ( 0  ) to zero at s  . 

Hence, 
air ( ) 1 1 (1 )

s

Y r


 


      for 0 s    ,   and air ( ) 0Y   for 1s   . 

Oxygen is a (given) fraction of the air, 
2O air( ) 0,233 ( )Y Y  . 

 

Product is linear from prod ( 0) 0Y    to prod ( ) 1sY   , and from there linear to prod ( 1) 0Y    . 

Alternatively expressed, prod fu air( ) 1 ( ) ( )Y Y Y      

That is, prod ( ) 1 1 (1 ) (1 )Y r r         for 0 s   , and 
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prod

1 1
( ) 1 ((1 ) 1) (1 )

r
Y r

r r
  


       for 1s   . 

 

For methane/air, the molar product is CO2+2H2O+7,52N2 per mole of methane; 

Hence 

2CO

prod

44
0,151

44 2 18 7,52 28

m

m
 

   
  and 

2CO prod( ) 0,151 ( )Y Y   with the 
prod ( )Y   above. 

 

 

6) 

Mean mass fraction: 
1

0

( ) ( )i iY Y f d     

Mean temperature: 
1

0

( ) ( )T T f d        

Variance of temperature: 
1

2 2

0

( ( ) ) ( )T T T f d      

The probability density function (pdf) ( )f  have to be expressed (and expressable). 

The conditions for validity is that the mixture fraction is the characteristic variable from which the 

other quantites can be expressed. This is satisfied in the “flamelet” regime, where flame sheets are 

little or moderately affected by the turbulent motions. 

 

7) 

For a two-way reaction A B C D   with forward and reverse coefficients f ( )k T and 

r ( )k T , the reaction rate of one of the species, say A, is  
f r

[A]
[A][B] [C][D]

d
k k

dt
   

f ( )k T is given/known, while r ( )k T  has to be determined. Since both are functions of temperature 

(and not of composition or pressure), any relation for a certain set of conditions at a certain 

temperature will be valid for all other conditions, provided that the temperature is the same. One 

simply analyzable condition is equilibrium. 

When the reaction is in equilibrium, the net reaction rate of A is zero; hence 

f r0 [A][B] [C][D]k k    or f

r

[C][D]

[A][B]

k

k
   (at equilibrium).  The right-hand side of this expression 

is recognized as the “equilibrium constant” for the reaction, which is a function of temperature 

only, hence f

r

( )c

k
K T

k
  or f

r

( )
( )

( )c

k T
k T

K T
 .   

Although the actual state is not in equilibrium, this relation is still valid. 

 

The equilibrium constant is expressed from the change of Gibbs free energy of the reaction when 

the reactants and products of the particular reaction is exchanged at reference pressure (1 atm or 1 

bar, depending on the data source) and the actual temperature T. That is, enthalpy and absolute 

entropy has to be known at temperature T and reference pressure for the participating species. 
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8) 

f1 2 r1

f2 2 r2

f3 2 r3 2

2

f4 2 r4

[OH]
[H][O ] [OH][O]

[H ][O] [OH][H]

[OH][H ] [H][H O]

2 [H O][O] 2 [OH]

d
k k

dt

k k

k k

k k

 

 

 

 

 

 

9) 

 

The simulation has to capture the range from biggest to smallest of length scales and time scales. 

The biggest length scales of each direction are the dimensions of the case: 0,4 m  × 0,1 m × 0,1 m 

The biggest time scale can be the through-flow timescale, 0,4 m/(10 m/s)=0,04 s, unless there is a 

longer timescale. Here, at least, the longest reaction time scale (given) is bigger.  

 

The least length scale can be the Kolmogorov length or the (given) smallest reaction length scale. 

With the data given, the turbulence velocity scale can be estimated as ' 0,1 1 m/su U    

The large turbulence length scale can be estimaded as ' 0,1 myL   

From these, the dissipation rate can be estimated as 
3 3 2 3 2 3/ (1 / 0,1) m / s 10 m / su      

And the Kolmogorov length, 
3 1/4 5 3 1/4 4( / ) (10 /10)  m 10  m        . This is bigger than the least 

reaction length scale. 

Thus, the spatial resolution has to be less than the smallest reaction length scale: 
5

r,min 10  mx      

 

The large turbulence mixing time scale, 
2 2/ / 1 /10 s 0,1 sk u       

The Kolmogorov time scale, 
1/2 5 1/2 3( / ) (10 /10)  s 10  s        

The convective time of the Kolmogorov length scale, 
4 5/ (10 /10) s 10  sU U       

The convective time of the least reaction length scale,
,min

5 6

, ,min / (10 /10) s 10  s
rU r U       

 

Thus, the latter will be the least time scale and the time resolution: 
,min

6

, 10  s
rUt      

The longest time scales will be the turbulence mixing time and the longest reaction time, which are of the 

same magnitude: 
r,max   

The number of time steps will be 
6 50,1 s 10  s=10tN t     

The number of cells (or nodes) in the transverse directions will be  
5 40,1 m 10  m=10z y yN N L x     , while 4 times more in the streamwise direction. 

Hence 
124 10p x y zN N N N      

 

 

10) 

The overall (global) reaction balance can be written as: 
1

4 2 2 2 2 2 22
CH 2(O 3.76N ) (1 )CO CO 2H O+(( 1)2 )O 2 3.76Na a a             

 

Apparently, the amount of CO is small compared to CO2 and O2, so that 1a  . 

(This approximation is not necessary, but simplifies the calculations. It has to be checked afterwards.) 

 

“dry” flue gas is without accounting the water vapor; 
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dry 1 1
2 2

fuel

1 2( 1) 7.52 9.52 1 9.52 1
n

a a a a
n

                

2

2

1
O 2

O ,dry 1
dry 2

2( 1) 2( 1)

9.52 1 9.52 1

n a
X

n a

 

 

  
  

  
;   

This value is given as 0,13; Hence the actual excess air ratio is 2,45  , and 
dry

fuel

9.52 1 22,32
n

n
    

Furthermore, 
6 CO

CO,dry 1
dry 2

25 10
9.52 1 9.52 1 22,32

n a a a
X

n a 

     
  

 

Hence, 
45,6 10a   .  (Then we see that the assumption 1a   was appropriate.) 

 

Now, we can calculate  
4 3CO CO CO CO

fuel fuel fuel fuel

28
5,6 10 0,98 10 kg/kg

16

m n M M
a

m n M M

        

 

 

The reference conditions for the regulations was at 15% O2, dry. 

 

2

2

O ,refref ref
O ,dr

ref ref

2( 1)
0,15

9.52 1
y

n
X

n






  


, which gives ref 2,45  and  

ref
ref

fuel

9.52 1 29,75
n

n
    

dryref 6 6CO CO
CO,dry

ref dry ref

22,32
25 10 18,8 10 18,8 ppm

29,75

nn n
X

n n n

          


